High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

نویسندگان

  • Hee-Chang Youn
  • Seong-Min Bak
  • Myeong-Seong Kim
  • Cherno Jaye
  • Daniel A Fischer
  • Chang-Wook Lee
  • Xiao-Qing Yang
  • Kwang Chul Roh
  • Kwang-Bum Kim
چکیده

A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors

In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced grapheneoxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets intothe sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution.During an acid catalyzed hydrolyze reaction and gelation proc...

متن کامل

On the Origin of the Enhanced Supercapacitor Performance of Nitrogen-Doped Graphene

Graphene-based electrodes have been widely tested and used in electrochemical double layer capacitors due to their high surface area and electrical conductivity. Nitrogen doping of graphene has recently been demonstrated to significantly enhance capacitance, but the underlying mechanisms remain ambiguous. We present the doping effect on the interfacial capacitance between graphene and [BMIM][PF...

متن کامل

Preparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors

In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced graphene oxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets into the sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution. During an acid catalyzed hydrolyze reaction and gelation process, rGO nanosheets were successfully do...

متن کامل

Nitrogen-doped Carbon Microfiber with Wrinkled Surface for High Performance Supercapacitors

In this work, nitrogen-doped carbon microfiber (NCMF) is fabricated via a facile co-assembly of natural silk and graphene oxide (GO) and the following thermal treatment. The amphiphilic nature of GO endows NCMF a crumpled surface with a high surface area of 115 m(2) g(-1). As the binder-free electrode in electrical double-layer capacitors, NCMF shows an excellent capacitance of 196 F g(-1) at s...

متن کامل

A Novel and an Efficient 3-D High Nitrogen Doped Graphene Oxide Adsorbent for the Removal of Congo Red from Aqueous Solutions

The current study both synthesizes and uses four compounds of graphene oxide (GO), nitrogen doped graphene oxide (ND-GO), high nitrogen doped graphene oxide (HND-GO), and three dimensional high nitrogen doped graphene oxide (3D-HND-GO) in order to remove a model anionic dye, Congo red (CR) from wastewaters. It also compares their carbon nano-structure, with regard to removal efficiency and find...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ChemSusChem

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2015